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Weighted-density approximation for general nonuniform fluid mixtures
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Department of Chemistry and Kansas Institute for Theoretical and Computational Science, University of Kansas,
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In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an
extension to multicomponent systems of the weighted-density approximation of Curtin and Ashcroft@Phys.
Rev. A32, 2909~1985!#. This extension corrects a deficiency in a similar extension proposed earlier by Denton
and Ashcroft@Phys. Rev. A42, 7312~1990!#, in that that functional cannot be applied to the multicomponent
nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the
accuracy of our functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere
fluid, and compare the results to simulation and the Denton-Ashcroft extension.@S1063-651X~99!03509-6#

PACS number~s!: 61.20.Gy, 64.70.Dv, 61.90.1d
es
o
l

im

se

a
l-

lt
n
i

n

ow
a

th

s
e
n

d
ts
e
,
x

th
e
n

ity
th
-

ur

f a
n

ed

-

cess

en-

able
ral,
ca-
art-
ar-

ost
we
ent
re-

ies
Density-functional theory has been applied with succ
to the calculation of the equilibrium properties of a variety
inhomogeneous fluid systems@1#. One of the most successfu
of these theories has been the weighted-density approx
tion ~WDA! of Curtin and Ashcroft@2#. The WDA has been
applied with good results to problems of solid-fluid pha
equilibria @2,3#, solid-liquid interfaces@4,5#, and nonuniform
fluids @6#. For systems with well-defined bulk densities th
are uniform throughout~such as in the case of freezing ca
culations!, the modified WDA~MWDA ! of Denton and Ash-
croft @7–9# may be used, yielding essentially identical resu
as the WDA with much less computation. By constructio
however, the MWDA cannot be used to study systems
which the bulk densities vary over length scales larger tha
few atomic diameters~for example, interfaces or nucleation!,
so the full WDA must be utilized in such cases.~It is, how-
ever, often possible to exploit the system symmetry to all
for some simplification of the WDA scheme, e.g., the plan
WDA of Marr and Gast@10#.!

Denton and Ashcroft have proposed an extension of
WDA and MWDA for multicomponent systems@11#. Using
the extended MWDA they calculated portions of the pha
diagram for the binary hard-sphere system and obtained
cellent agreement with the simulation results of Kranendo
and Frenkel@12#. However, the WDA that they propose
assumes that the mole fractions of the various componen
the mixture are global properties of the system, making th
approach inapplicable to systems, such as interfaces
which spatially extended variations of composition may e
ist. In this paper, we propose a different extension of
WDA for multicomponent systems that correctly preserv
the local nature of the WDA and thus can be applied to a
inhomogeneous fluid system. In order to verify the valid
of our approximation, we also formulate the extension of
MWDA consistent with our extension of the WDA and com
pare our results for freezing of a binary hard-sphere mixt
with those of Denton and Ashcroft@11#.

We formulate our extension of the WDA for the case o
binary mixture—the extension to three or more compone
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is straightforward. The state of a binary mixture is specifi
by the single-particle densities of each speciesr1(r ) and
r2(r ), or, alternatively, by the total densityr(r )[r1(r )
1r2(r ) and the mole fractionx(r ), which we take to be the
concentration of component 2 (x[x25r2 /r). A fundamen-
tal result of the density-functional theory is that the Helm
holtz free energyF @r1 ,r2# is a unique functional of the
densities and is minimized~at constant average density! by
the correct equilibrium densities.

The free energy can be separated into ideal and ex
terms as follows:

F@r1 ,r2#5Fid@r1 ,r2#1Fex@r1 ,r2#, ~1!

where the ideal part is simply the sum of the ideal free
ergies of the individual components

Fid@r1 ,r2#5b21(
i 51

2 E dr r i~r !@ ln L i
3r i~r !21#, ~2!

with L i being the thermal wavelength of componenti. An
analytic expression for the excess free energy is not avail
and, in practice, this term must be approximated. In gene
a density-functional theory is a procedure for the specifi
tion of this excess free-energy functional. One natural st
ing point for the development of such theories is the hier
chy of n-particle direct correlation functionsci ...j

(n) defined as
functional derivatives ofFex with respect to the densities

ci¯ j
~n! ~r1 ,...,rn ;r1 ,r2!52b

dnFex@r1 ,r2#

dr i~r1!¯dr j~rn!
,

i ,...,j 51,2 ~3!

Most theories to date are constructed so that Eq.~3! is exact
in the homogeneous fluid limit—at least forn52. Of such
theories, the WDA and MWDA have been perhaps the m
successful for single-component systems. In what follows
discuss extensions of these theories to multicompon
systems—the original single component theories can be
covered in the limit that the mole fraction of one spec
becomes unity.
3417 © 1999 The American Physical Society
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Denton and Ashcroft generalize the WDA to binary mi
tures by writing the WDA excess free energy in the fo
@11#

Fex@r1 ,r2#5E dr r1~r !c„r̄ ~1!~r !,x…

1E dr r2~r !c„r̄ ~2!~r !,x…, ~4!

wherec(r,x) is the excess free energy per particle of t
correspondinguniform mixture, andx represents theglobal
average concentration of the nonuniform mixture. The t
different total weighted densitiesr̄ (1)(r ) and r̄ (2)(r ) are de-
fined as weighted averages of the physical densities w
respect to weight functionswi j according to

r̄ ~ i !~r ![(
j 51

2 E dr 8 r j~r 8!wi j „ur2r 8u; r̄ ~ i !~r !,x…, i 51,2.

~5!

The weight functions must be normalized

E dr 8 wi j ~ ur2r 8u;r!51, i , j 51,2 ~6!

and such that the approximateFex exactly satisfies Eq.~3!
for n52 in the uniform fluid limit

ci j ~ ur12r2u;r1 ,r2!52b lim
r~r !→r

F d2Fex@r1 ,r2#

dr i~r2!dr j~r1!G ,
i , j 51,2. ~7!

In order to compute the weight functions, one now has
solve the system of three nonlinear differential equatio
@11#.

The MWDA is generalized by Denton and Ashcroft in th
same spirit with

Fex@r1 ,r2#5N1c~r̄~1!,x!1N2c~r̄~2!,x!, ~8!

where the weighted densitiesr̄ (1) and r̄ (2) are position-
independent and defined as

r̄ ~ i ![
1

Ni
(
j 51

2 E dr dr 8 r i~r !r j~r 8!wi j ~ ur2r 8u; r̄ ~ i !,x!,

i 51,2. ~9!

As in the single-component case, the MWDA is much le
computationally demanding, so Denton and Ashcroft ha
used this approximation to compute freezing conditions
the binary hard-sphere mixtures with different diameter
tios. Their results fora.0.85 closely follow those obtaine
in the simulations by Kranendonk and Frenkel@12#.

Nevertheless, the binary mixture WDA of Denton a
Ashcroft defined by Eqs.~4! and~5! cannot be used to stud
any binary system with extended spatial variations of av
age composition. The problems are best illustrated by
example of a planar crystal-fluid interface. The excess f
energyFex in Eq. ~4! and, therefore, the weight functionswi j
in Eq. ~5! are defined to depend explicitly on the glob
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average concentrationx. Obviously, this quantity cannot b
uniquely defined for the interfacial system, where it has to
equal to the crystal coexistence valuesxc on the one side of
the interface and to the fluid valuexf on the other side.
Mathematically, the WDA equations forwi j (k;r,x) derived
by Denton and Ashcroft@11# contain terms proportional to
dk,0 , so that the computed weight functions are discontin
ous in Fourier space atk50. This means that one canno
recover the bulk crystal or fluid properties in the regio
remote from the interface~in the limit z→6`, wherez is
the axis perpendicular to the interfacial plane!.

In order to circumvent these difficulties, we propose
extension of the WDA to binary mixtures in whichweighted
concentrationsx̄(1)(r ) and x̄(2)(r ) are introduced in addition
to the weighted densities. The weighted concentrations
place the average concentrationx in Eq. ~4! and are defined
according to

x̄~ i !~r ![
1

r̄ ~ i !~r !
E dr 8 r2~r 8!wi2„ur2r 8u; r̄ ~ i !~r !,x̄~ i !~r !…,

i 51,2. ~10!

It is more convenient to write this extension scheme in ter
of the weighted densities of individual speciesr̄ j

( i )(r ) de-
fined as

r̄ j
~ i !~r ![E dr 8r j~r 8!wi j „ur2r 8u; r̄1

~ i !~r !,r̄2
~ i !~r !…, i , j 51,2

~11!
which are input into the excess free-energy expression,

Fex@r1 ,r2#5E dr r1~r !c„r̄1
~1!~r !,r̄2

~1!~r !…

1E dr r2~r !c„r̄1
~2!~r !,r̄2

~2!~r !…, ~12!

wherec(r1 ,r2) is the same excess free energy per parti
as in Eq.~4!, but expressed in variablesr1 andr2 .

Substitution ofFex from Eq. ~12! into Eq. ~7! leads ex-
plicitly to the following set of equations for the three weig
functions in Fourier space:

2b21c11~k!52
]c

]r1
w11~k!1

]2c

]r1
2 @r1w11

2 ~k!1r2w12
2 ~k!#

12
]c

]r1
Fr1w11~k!

]w11~k!

]r1

1r2w12~k!
]w12~k!

]r1
G , ~13!

2b21c12~k!5S ]c

]r1
1

]c

]r2
Dw12~k!1

]2c

]r1 ]r2

3@r1w11~k!1r2w22~k!#w12~k!

1
]c

]r1
Fr1w12~k!

]w11~k!

]r2

1r2w22~k!
]w12~k!

]r2
G1

]c

]r2
Fr1w11~k!

3
]w12~k!

]r1
1r2w12~k!

]w22~k!

]r1
G , ~14!
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2b21c22~k!52
]c

]r2
w22~k!1

]2c

]r2
2 @r1w12

2 ~k!1r2w22
2 ~k!#

12
]c

]r2
Fr1w12~k!

]w12~k!

]r2

1r2w22~k!
]w22~k!

]r2
G . ~15!

The normalization of the weight functions ensures tha
k50 Eqs.~13!–~15! correctly reduce to the compressibilit
rules for a binary mixture@14#,

2b21ci j ~k50;r1 ,r2!5
]c

]r i
1

]c

]r j
1r

]2c

]r i ]r j
, i , j 51,2.

~16!
Unlike the original generalization of Denton and Ashcro
@11#, the above equations do not contain terms proportio
to dk,0 , and are thus continuous functions ofk.

In order to calculate the weight functions from Eqs.~13!–
~15!, we need to specifyci j (k), the Fourier transforms of the
uniform direct correlation functions, andc(r1 ,r2), the
Helmholtz free energy per particle. As an example, we h
calculated the weight functions for the binary hard-sph
mixture with diameter ratioa[s1 /s250.8 and use as inpu
the analytical expressions for a uniform binary mixtu
within the Percus-Yevick approximation@13,14#.

Equations~13!–~15! are a system of nonlinear differentia
equations. We use an iterative scheme, which has satis
tory convergence for all values ofk and density. We start by
assuming thatw12 and all derivatives ofwi j are zero and
solve the quadratic equations forw11 andw22. Then we es-
timate the derivatives ofw11 andw22 using finite differences
and solve the equation forw12, which is linear inw12. Fi-
nally, we estimate the derivative ofw12. After five to ten

FIG. 1. WDA weight functionswi j (k) for a binary hard-sphere
mixture. The system parameters area50.8, x50.7, and r
51.1s2

23. The dotted, solid, and dashed curves correspond tow11,
w12, andw22, respectively.
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iterations the solution converges to within five significa
digits. Figure 1 showswi j (k) computed for the binary hard
sphere fluid with diameter ratioa50.8, concentrationx
50.7, and total densityr51.1s2

23. All three functions
smoothly approach unity whenk→0, thus satisfying the nor-
malization conditions and allowing application of the WD
to binary systems with spatially varying characteristics.

In order to compare our extension of the WDA to mi
tures with that of Denton and Ashcroft@11#, we repeat the
freezing calculations for a binary hard-sphere mixture us
the MWDA consistent with the extension of the WDA pr
sented earlier. The excess free-energy functional is writte

Fex@r1 ,r2#5N1c~r̄1
~1! ,r̄2

~1!!1N2c~r̄1
~2! ,r̄2

~2!!, ~17!

where the weighted densitiesr̄ j
( i ) are defined as

r̄ j
~ i ![

1

Ni
E dr dr 8r i~r !r j~r 8!wi j ~ ur2r 8u; r̄1

~ i ! ,r̄2
~ i !!,

i , j 51,2. ~18!
This extension of the MWDA yields the following equation
for the weight functionwi j (k) in Fourier representation:

2b21ci j ~k!5S ]c

]r i
1

]c

]r j
Dwi j ~k!1dk,0r

]2c

]r i ]r j
, i , j 51,2

~19!

where r5r11r2 is the total density. Agreement with th
compressibility rules given by Eq.~16! is obvious.

Comparison between the freezing parameters obta
within our extension of the MWDA and that of Denton an
Ashcroft is shown in Figs. 2–4. Figure 2 presents t
pressure-concentration phase diagrams together with
simulation results of Kranendonk and Frenkel@12#, which
are scaled down by a factor of 0.871 in order to match
transition parameters in the single-component limit (x50
and 1!. The scaling compensates for the discrepancies
tween theory and simulation in the freezing parameters of
one-component system and helps to emphasize the ge

FIG. 2. Comparison of binary hard-sphere crystal-melt ph
diagrams computed with the original MWDA by Denton and As
croft @11# ~dashed lines! and our extension of the MWDA~solid
lines!. Also shown are therescaledsimulation data from Ref.@12#
~see text for explanation!.
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features of the binary-system phase diagram. Overall,
two extensions of the MWDA produce very similar pha
diagrams and reproduce fairly well qualitative behavior
the simulation results.

Figure 3 compares the crystal and fluid packing fractio
at coexistence. The packing fractions in the crystal ph
differ for the two extensions much more than the fluid pa
ing fractions.

Figure 4 shows the Lindemann parameters for the
types of spheres. In both cases, the smaller spheres
larger Lindemann parameters for all values of concentrat
The Lindemann parameters for the two extensions of

FIG. 3. ~a! Packing fraction in the crystal phase at coexisten
Dashed lines represent the results of the original MWDA and s
lines represent the results from our extension of the MWDA.~b!
Packing fraction in the fluid phase at coexistence.
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MWDA coincide for larger spheres atx51, and for smaller
spheres atx50, where the single-component limit is reco
ered for the remaining type of spheres.

In conclusion, we have constructed an extension of
weighted-density approximation~WDA! of Curtin and Ash-
croft @2# to multicomponent systems. This density-function
theory is more general than a previous extension by Den
and Ashcroft@11# in that it preserves the local character
the weighted densities and thus allows its application to s
tems with extended spatial variations in average comp
tion, such as solid-liquid interfaces.

This research was supported by the National Scie
Foundation under Grant No. CHE-950281. The authors a
thank the Kansas Institute for Theoretical and Computatio
Science~KITCS! and the Kansas Center for Advanced S
entific Computing~KCASC! for support and computing re
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FIG. 4. Lindemann parameters for the two types of spheres
culated according to the original MWDA~dashed lines! and our
extension~solid lines!.
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