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Weighted-density approximation for general nonuniform fluid mixtures
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In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an
extension to multicomponent systems of the weighted-density approximation of Curtin and A$Rtnest
Rev. A32,2909(1985]. This extension corrects a deficiency in a similar extension proposed earlier by Denton
and Ashcroff Phys. Rev. Ad42, 7312(1990], in that that functional cannot be applied to the multicomponent
nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the
accuracy of our functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere
fluid, and compare the results to simulation and the Denton-Ashcroft extefSibd63-651X99)03509-6

PACS numbgs): 61.20.Gy, 64.70.Dv, 61.96d

Density-functional theory has been applied with successs straightforward. The state of a binary mixture is specified
to the calculation of the equilibrium properties of a variety of by the single-particle densities of each spegigér) and
inhomogeneous fluid systerfis]. One of the most successful p,(r), or, alternatively, by the total density(r)=p,(r)
of these theories has been the weighted-density approximak p»(r) and the mole fractio(r), which we take to be the
tion (WDA) of Curtin and Ashcroff2]. The WDA has been concentration of component X£x,=p,/p). A fundamen-
applied with good results to problems of solid-fluid phasetal result of the density-functional theory is that the Helm-
equilibria[2,3], solid-liquid interface$4,5], and nonuniform  holtz free energyF[p;,p,] is a unique functional of the
fluids [6]. For systems with well-defined bulk densities thatdensities and is minimizetat constant average dengityy
are uniform throughoutsuch as in the case of freezing cal- the correct equilibrium densities.
culationg, the modified WDAMWDA) of Denton and Ash- The free energy can be separated into ideal and excess
croft[7—9] may be used, yielding essentially identical resultsterms as follows:
as the WDA with much less computation. By construction,
however, the MWDA cannot be used to study systems in FLp1.p2]=Fid p1.p2]+ Fed p1.p2], (1)
which the bulk densities vary over length scales larger than a ) o )
few atomic diameter&or example, interfaces or nucleatipn Where the ideal part is simply the sum of the ideal free en-
so the full WDA must be utilized in such casék.is, how-  €rgies of the individual components
ever, often possible to exploit the system symmetry to allow 2
fvzgfrgfeg;";fgggag‘;gg(;ff WDA scheme, €.9. (e PIANAT £l p1.pol =512 f dr pi(N[In A?pi(N =11, (2)

Denton and Ashcroft have proposed an extension of the
WDA and MWDA for multicomponent systenjd1]. Using  with A; being the thermal wavelength of componénAn
the extended MWDA they calculated portions of the phaseanalytic expression for the excess free energy is not available
diagram for the binary hard-sphere system and obtained exnd, in practice, this term must be approximated. In general,
cellent agreement with the simulation results of Kranendonka density-functional theory is a procedure for the specifica-
and Frenkel[12]. However, the WDA that they proposed tion of this excess free-energy functional. One natural start-
assumes that the mole fractions of the various components @fig point for the development of such theories is the hierar-
the mixture are global properties of the system, making theithy of n-particle direct correlation functions™; defined as

approach inapplicable to systems, such as interfaces, iunctional derivatives off,, with respect to the densities
which spatially extended variations of composition may ex-

ist. In this paper, we propose a different extension of the - " Felp1.P2]
WDA for multicomponent systems that correctly preserves Ci.j(F1soilnip1,p2) == B 50.(F) O, ;
: pi(ra) PJ(rn)
the local nature of the WDA and thus can be applied to any
inhomogeneous fluid system. In order to verify the validity i,....,=12 (3

of our approximation, we also formulate the extension of the

MWDA consistent with our extension of the WDA and com- Most theories to date are constructed so that(Byis exact

pare our results for freezing of a binary hard-sphere mixturén the homogeneous fluid limit—at least fa=2. Of such

with those of Denton and Ashcraft1]. theories, the WDA and MWDA have been perhaps the most

We formulate our extension of the WDA for the case of asuccessful for single-component systems. In what follows we

binary mixture—the extension to three or more componentsliscuss extensions of these theories to multicomponent
systems—the original single component theories can be re-
covered in the limit that the mole fraction of one species

* Author to whom correspondence should be addressed. becomes unity.
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Denton and Ashcroft generalize the WDA to binary mix- average concentration Obviously, this quantity cannot be
tures by writing the WDA excess free energy in the formuniquely defined for the interfacial system, where it has to be
[11] equal to the crystal coexistence valu€son the one side of

the interface and to the fluid value on the other side.

Mathematically, the WDA equations fav;; (k;p,x) derived
— 1) i
}—ex[pl'pﬂ_f dr pa(r) ¢(p™(r), x) by Denton and Ashcroff11] contain terms proportional to
dk0, SO that the computed weight functions are discontinu-
2) ous in Fourier space &=0. This means that one cannot
+j dr pa(1) (o' (1) ), @) recover the bulk crystal or fluid properties in the regions

remote from the interfacén the limit z— =, wherez is
where /(p,x) is the excess free energy per particle of thethe axis perpendicular to the interfacial plane
correspondinginiform mixture, andx represents thglobal In order to circumvent these difficulties, we propose an
average concentration of the nonuniform mixture. The twoextension of the WDA to binary mixtures in whiebeighted
differenttotal weighted densitiep™)(r) andp®(r) are de-  concentrationxt®)(r) andxt?)(r) are introduced in addition
fined as weighted averages of the physical densities witlho the weighted densities. The weighted concentrations re-
respect to weight functions;; according to place the average concentratioi Eq. (4) and are defined

according to

2
—ti) = ey 3 |t - . 1 ) )
p(r) 121 f dr’ py(rwi(Jr=r'[;p"(r),x), =12 W)(r)zﬁfi)—(r)f dr’ po(r Wis(lr =10 () X (r)),

©)
The weight functions must be normalized _ _ — . 1=12. (.10)
It is more convenient to write this extension scheme in terms
) ) o of the weighted densities of individual specig®(r) de-
f dr’ wi([r=r'[;p)=1, i,j=1,2 (6)  fined as

and such that the approximaf€., exactly satisfies Eq(3) —f'>(r)_J dr’p;(r"yw;( (r=r'1;p80(r), (), i,j=1,2
for n=2 in the uniform fluid limit (11)

2Folp1.p2] } which are input into the excess free-energy expression,

Cij([ri=ral;p1,p2)=—p lim {—
i\t ralp1.p2 o(r)—pl OPi(12) Opj(r1) ]_.ex[pl,pz]:fdrpl(r),r/,(ﬁfll)(r),ﬁle)(f))
ij=12. (7

In order to compute the weight functions, one now has to f dr po(r) (e (), p2(r), (12
solve the system of three nonlinear differential equations
[11]. where (p41,p») is the same excess free energy per particle
; ; ; as in Eq.(4), but expressed in variables andp,.
sa;ges'vli\r/i\tlsvpi\tés generalized by Denton and Ashcroft in the Substitution of 7, from Eg. (12) into Eq. (7) leads ex-
P plicitly to the following set of equations for the three weight

Folpiopal = Ny(P™0 ) + N5 %), (8  functions in Fourier space:
2
where the weighted densitigs’® and p'® are position-  — g tcyy(k)=2 l//wll(k)+ f[plwll(k)erzwlZ(k)]
independent and defined as

2 P dwy1(K)
=0 2 [ arar nom e 0, 25 {plwﬂ(k)
i=12. (9 +paWiAK) &W”(k)} (13)
ap1
As in the single-component case, the MWDA is much less P Py
computationally demanding, so Denton and Ashcroft have —pg~1c (k)= —+ —) wi(K)+
used this approximation to compute freezing conditions of 9p19p2
the binary hard-sphere mixtures with different diameter ra-
tios. Their results fow>0.85 closely follow those obtained X[p1W1a(K) + paWan(K) JWi(K)
in the simulations by Kranendonk and Frenk&g]. P IWy4(K)
Nevertheless, the binary mixture WDA of Denton and +f9_P1 p1WiAK apy
Ashcroft defined by Eqg4) and(5) cannot be used to study
any binary system with extended spatial variations of aver- t oK) Wi (K) | Y wii(K)
age composition. The problems are best illustrated by the p2az apy ap, | P
example of a planar crystal-fluid interface. The excess free
energyFe,in Eq.(4) and, therefore, the weight functions; XaW12(k) T pWiK) ‘?W22(k)} (14)
in Eq. (5) are defined to depend explicitly on the global ap1 apr |’
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FIG. 2. Comparison of binary hard-sphere crystal-melt phase
. . diagrams computed with the original MWDA by Denton and Ash-
0 5 10 15 croft [11] (dashed linesand our extension of the MWDAsolid
kos lines). Also shown are theescaledsimulation data from Ref.12]
(see text for explanation

FIG. 1. WDA weight functionsw;;(k) for a binary hard-sphere
mixture. The system parameters are=0.8, x=0.7, and p
= 1.1053. The dotted, solid, and dashed curves correspomg, 1o
Wi,, andws,,, respectively.

iterations the solution converges to within five significant

digits. Figure 1 showsv;;(k) computed for the binary hard-

sphere fluid with diameter ratiev=0.8, concentrationx
o P2y =0.7, and total dens_itypzl.laf. All three_ functions

— B e, k) =2 3_W22(k) + —— [ p1W2,(K) + pow2,(K) ] smqoth.ly approag:h unity thn—f 0, thus _satl_sfymg the nor-
P2 ap3 malization conditions and allowing application of the WDA

to binary systems with spatially varying characteristics.

+2ﬂ{plw12(k) wiz(k) In order to compare our extension of the WDA to mix-
dp2 ap2 tures with that of Denton and Ashcrdft1], we repeat the
W K) freezing calculations for a binary hard-sphere mixture using
+ poWo(K) } (155  the MWDA consistent with the extension of the WDA pre-
dp2 sented earlier. The excess free-energy functional is written as

The normalization of the weight functions ensures that at Fed p1.p2]=Nugp(pt p5) + Nop(p12 052, (17)
k=0 Egs.(13)—(15) correctly reduce to the compressibility

rules for a binary mixturé14], where the weighted densitigd” are defined as

) 1 ) .
oy Iy ;o 5= "1 dr dr’o:(No:(rw (lr=r'1: 5t Bt
- B¢, k=0;p,, = —+ —+ . 1,j=1,2. Pi =N\ rar pl(r)pj(r )W,](|I’ r |7pl P2 ),
B 7cij( P1:P2) o ap P op ap, i N;
(16) ij=12. (18

Unlike the original generalization of Denton and Ashcroft thig extension of the MWDA yields the following equations
[11], the above equations do not contain terms proportionafy, the \eight functionw;; (k) in Fourier representation:
to &y o, and are thus continuous functionslof )

In order to calculate the weight functions from E¢k3)— . ay I Py o
(15), we need to specifg;;(k), the Fourier transforms of the — B8 Ci;(k)= (5 + 5) wij (k) + 5k,OPW- hj=1.2
uniform direct correlation functions, and/(p;,p,), the ' ! o (19

Helmholtz free energy per particle. As an example, we have
calculated the weight functions for the binary hard-spherevhere p=p,+p, is the total density. Agreement with the
mixture with diameter ratiee=0,/0,=0.8 and use as input compressibility rules given by Eq16) is obvious.
the analytical expressions for a uniform binary mixture Comparison between the freezing parameters obtained
within the Percus-Yevick approximatidi3,14]. within our extension of the MWDA and that of Denton and
Equationg13)—(15) are a system of nonlinear differential Ashcroft is shown in Figs. 2—4. Figure 2 presents the
equations. We use an iterative scheme, which has satisfapressure-concentration phase diagrams together with the
tory convergence for all values &fand density. We start by simulation results of Kranendonk and Frenk&P], which
assuming thatv,, and all derivatives ofw;; are zero and are scaled down by a factor of 0.871 in order to match the
solve the quadratic equations far; andw,,. Then we es- transition parameters in the single-component limit=0Q
timate the derivatives ofv;; andw,, using finite differences and 1. The scaling compensates for the discrepancies be-
and solve the equation fav,,, which is linear inwy,. Fi-  tween theory and simulation in the freezing parameters of the
nally, we estimate the derivative of,,. After five to ten  one-component system and helps to emphasize the general
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Lindemann ratios

FIG. 4. Lindemann parameters for the two types of spheres cal-
0 01 02 03 04 05 06 07 08 09 1 culated according to the original MWDAdashed lingsand our
P extension(solid lines.

FIG. 3. (a) Packing fraction in the crystal phase at coexistence MWDA coincide for larger spheres at=1, and for smaller
Dashed lines represent the results of the original MWDA and solidspheres ak= 0, where the single-component limit is recov-
lines represent the results from our extension of the MWI.  ered for the remaining type of spheres.

Packing fraction in the fluid phase at coexistence. In conclusion, we have constructed an extension of the

weighted-density approximatiofWDA) of Curtin and Ash-
croft [2] to multicomponent systems. This density-functional
Fneory is more general than a previous extension by Denton
and Ashcroft[11] in that it preserves the local character of
the weighted densities and thus allows its application to sys-

the simulation results. - . o . .
Figure 3 compares the crystal and fluid packing fraction tems with extended spatial variations in average composi-
S’uon, such as solid-liquid interfaces.

at coexistence. The packing fractions in the crystal phase
differ for the two extensions much more than the fluid pack- This research was supported by the National Science

ing fractions. Foundation under Grant No. CHE-950281. The authors also

Figure 4 shows the Lindemann parameters for the twdhank the Kansas Institute for Theoretical and Computational
types of spheres. In both cases, the smaller spheres hageience(KITCS) and the Kansas Center for Advanced Sci-
larger Lindemann parameters for all values of concentrationentific Computing(KCASC) for support and computing re-
The Lindemann parameters for the two extensions of th&ources.

features of the binary-system phase diagram. Overall, th
two extensions of the MWDA produce very similar phase
diagrams and reproduce fairly well qualitative behavior of
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